Поперечный эффект Допплера и принцип относительности.

Л. Римппа

В. Римша

laimontas.rimsa@yahoo.com

viktor@pasvalys.lt

Показано, что общепринятое в рамках формализма ОТО одинаковое рассмотрение смещения частоты электромагнитных волн, обусловленного гравитационным статическим полем и релятивистким поперечным эффектом Допплера, не согласуется с принципом относительности СТО.

1.Введение.

Согласно принципу относительности СТО, релятивисткие эффекты могут быть обусловленны только относительной скоростью между системами отсчета, так как сами трансформации Лоренца между системами отсчета зависят только от относительной скорости . Рассмотрим две системы отсчета (систему отсчета 1 и систему отсчета 2), находящиеся относительно друг друга в относительном движении . Если обозначить :

 $ec{V}$ - относительная скорость между системой отсчета 1 и системой отсчета 2,

 ω_0 - частота электромагнитных волн наблюдаемая в системе отсчета неподвижного излучателя этих волн в системе отсчета 1,

 ω - это частота электромагнитных волн наблюдаемая в системе отсчета 2

то в этом случае, наблюдатель, неподвижный в системе отсчета 2, будет наблюдать смещение частоты этих волн [1] (с. 159), обусловленное поперечным эффектом Допплера,

$$(\Delta\omega)_{TD} = (\omega - \omega_0)_{TD} = \omega_0(\sqrt{1 - \frac{\vec{V}^2}{c^2}} - 1)$$
 (1)

Если же частота ω_0 - это частота электромагнитных волн наблюдаемая в системе отсчета неподвижного излучателя этих волн в системе отсчета 2, то в этом случае , наблюдатель, неподвижный в системе отсчета 1 , тоже будет измерять такое же смещение $(\Delta\omega)_{TD}$. Этот , симметричный относительно систем отсчета 1 и 2 , результат является прямым следствием принципа относительности . Точно таким же симметричным образом, как и измеряемые частоты в разных системах отсчета, ведут себя в СТО и наблюдаемые промежутки времени (и периоды процессов) [2] (с. 64) - Иногда говорят, что в движущейся системе время идет медленее, чем в неподвижной . Такая формулировка, однако , неправильная , так как , на основании принципа относительности , всегда можно поменять ролями движущуюся и неподвижную системы, и тогда получилось бы противоречие.

Характер возникающих здесь недорозумений легче всего пояснить на математическом примере (который , впрочем, имеет прямое отношение к данному вопросу). Мы видели в §10 , что

для преобразования Лоренца
$$\frac{\partial t'}{\partial t} = a_{00} = \frac{1}{\sqrt{1-\frac{V^2}{c^2}}} \succ 1$$
 (14.11) . Но и для обратного

преобразования мы имеем
$$\frac{\partial t}{\partial t'} = a_{00} = \frac{1}{\sqrt{1 - \frac{V^2}{c^2}}} \succ 1$$
 (14.12). Если забыть про то, что в

(14.11) производная по t берется при постоянных x,y,z, а в (14.12) производная по t' берется при постоянных x',y',z' , то может показаться странным, что $\frac{\partial t}{\partial t'}$ не равно обратной величине $\frac{\partial t'}{\partial t}$, а равно ей самой. Ясно , однако, что никакого "парадокса" нет.

Возвращаясь к физической стороне дела, можно заметить, что в данной задаче речь идет не об "ходе времени" в разных системах отсчета, а об описании хода некоторого локализированного процесса в разных системах отсчета. Пусть процесс локализован в точке, неподвижной в нештрихованной системе отсчета (постоянные x,y,z). Тогда из $\frac{\partial t'}{\partial t} \succ 1$ мы заключаем, что длительность (или период) процесса в "своей" (нештрихованной) системе отсчета будет меньше, чем во всякой другой (штрихованной) системе отсчета, которая относительно "своей" системы движется. Если же процесс локализован в точке с постоянными координатами x',y',z', то "своей" системой будет штрихованная , и мы будем иметь $\frac{\partial t}{\partial t'} \succ 1$, но по существу заключение не измениться .

Так как везде далее мы ограничиваемся приближением порядка $\frac{1}{c^2}$, то три эффект — гравитационное смещение частоты, продольный эффект Допплера и поперечный эффект Допплера можно рассматривать по отдельности (в этом приближении эти все эффекты обладают свойством адитивности). Этого же приближения будем придерживаться и при рассмотрении конкретного вопроса об смещении частоты сигналов СВЧ волн в случае посылки сигнала с Земли на космический зонд и возвращения этого сигнала с космического зонда на Землю .

2. Гравитационное смещение частоты и релятивисткий поперечный эффект Допплера .

Обозначим следующие величины:

au - собственное время неподвижного наблюдателя, находящегося в гравитационном поле,

t - координатное время (собственное время неподвижного и бесконечно удаленного наблюдателя),

 $\Phi \;$ - ньютоновый потенциал в точке нахождения наблюдателя, отсчитывающего собственное время τ .

Тогда, согласно ОТО, эти величины удовлетворяют следующее уравнение

$$d\tau \approx (1 + \frac{\Phi}{c^2})dt$$

Если ω_0 - частота электромагнитных волн , наблюдаемая в системе отсчета неподвижного излучателя этих волн в системе отсчета 1,а ω - частота электромагнитных волн наблюдаемая в системе отсчета 2, то в этом случае отношение наблюдаемых (измеряемых) частот сигнала в разных точках , находящихся при разных значения гравитационного потенциала , равно

$$\frac{\omega}{\omega_0} = \frac{d\tau_1}{d\tau_2} \tag{2}$$

Гравитационное смещение частоты сигналов

$$(\Delta\omega)_G \approx \omega - \omega_0 \approx \omega_0 (\frac{d\tau_1}{d\tau_2} - 1) \approx \omega_0 (\frac{\Phi_1}{c^2} - \frac{\Phi_2}{c^2})$$

Если при расспространении сигнала из точки 1 в точку 2 имело место красное гравитационное смещение частоты, то при обратном процессе гравитационное смещение частоты уже будет фиолетовым, так как это смещение зависит от разности гравитационных потенциалов между точками излучения и приема сигнала. Поэтому и возможно гравитационное смещение частоты описать как эффект замедления времени – можно представить, что в разных точках пространства, в зависимости от значения гравитационного потенциала, ход собственного времени неподвижных часов различный.

Если же, как теперь общепринято в ОТО, собственное время наблюдателя τ , двигающегося в гравитационном статическом поле, записать следующим образом (\vec{v} - скорость наблюдателя относительно неподвижного и бесконечно удаленного наблюдателя)

$$d\tau \approx (1 + \frac{\Phi}{c^2} - \frac{1}{2} \frac{\vec{v}^2}{c^2})dt \tag{3}$$

, а само смещение частоты сигналов расматривать при помощи формулы (2), то вклад поперечного эффекта Допплера в это смещения частоты сигнала будет отличаться от вклада в случае использования формулы (1). Основное отличительное свойство отношения (2) от формулы (1) — для обратного процесса вклад поперечного эффекта Допплера в смещение частоты сигнала (как и вклад гравитационного смещения) меняет знак. В случае примера в предыдущем разделе из формулы (2) следует , что , если ω_0 — частота электромагнитных волн наблюдаемая в системе отсчета неподвижного излучателя этих волн в системе отсчета 1, то в этом случае , наблюдатель, неподвижный в системе отсчета 2 , будет наблюдать следующее смещение частоты сигнала (one-way) [4]

$$(\Delta\omega)_{TD} + (\Delta\omega)_{G} \approx \omega_{0}(\frac{d\tau_{1}}{dt_{1}}\frac{dt_{2}}{d\tau_{2}} - 1) \approx (\Delta\omega)_{G} + \omega_{0}(-\frac{\vec{V}_{1}^{2}}{2c^{2}} + \frac{\vec{V}_{2}^{2}}{2c^{2}})$$

Вклад поперечного эффекта Допплера в смещение частоты равен

$$(\Delta\omega)_{TD} \approx \omega_0 (-\frac{\vec{V}_1^2}{2c^2} + \frac{\vec{V}_2^2}{2c^2})$$

Если же ω_0 - это частота электромагнитных волн наблюдаемая в системе отсчета неподвижного излучателя этих волн в системе отсчета 2, в этом случае , наблюдатель, неподвижный в системе отсчета 1 , будет измерять другое смещение частоты сигнала

$$(\Delta\omega)_{\scriptscriptstyle TD} + (\Delta\omega)_{\scriptscriptstyle G} \approx \omega_0 (\frac{d\tau_2}{dt_2}\frac{dt_1}{d\tau_1} - 1) \approx (\Delta\omega)_{\scriptscriptstyle G} + \omega_0 (\frac{\vec{V}_1^2}{2c^2} - \frac{\vec{V}_2^2}{2c^2})$$

Очевидно, что вклад поперечного эффекта Допплера в смещение частоты, в случае обратного процесса , как и вклад статического гравитационного поля , меняет знак

$$(\Delta\omega)_{\scriptscriptstyle TD}\approx\omega_0(\frac{\vec{V}_1^{\,2}}{2c^2}-\frac{\vec{V}_2^{\,2}}{2c^2})$$

Согласно (1), при соблюдения принципа относительности, как в случае распространения сигнала из системы отсчета 1 в систему отсчета 2, так в случае обратного процесса, вклад поперечного эффекта Допплера должен быть в виде красного смещения частоты сигнала.

По этой причине общепринятое рассмотрение поперечного эффекта Допплера при помощи формулы (2) и не согласуется с принципом относительности СТО.

3.Поперечный эффект Допплера с учетом принципа относительности СТО.

Рассмотрим вклад поперечного эффекта Допплера в смещение частоты сигналов в системе отсчета относительно которой и излучатель и приемник сигналов двигаются, при условии, что поперечный эффект Допплера зависит только от квадрата относительной скорости между излучателем и приемником. Если, к тому же, принять следующее приближение — за время излучения и время приема сигнала скорости излучателя и приемника остаются постоянными (за это очень короткое время излучатель и приемник двигаются инерциально), то тогда можно к процесссам излучения и приема сигналов применить формализм СТО.

Введем следующие обозначения:

 $ec{V_1}$ - скорость , находящегося на Земле излучателя волн относительно барицентрической системы отсчета Солнечной системы, в момент излучения сигнала

 $ec{V}_2$ - скорость космического зонда относительно барицентрической системы в момент приема сигнала ,

 $ec{V}$ - относительная скорость между излучателем и космическим зондом.

Как известно ([2] (с. 70)), в СТО квадрат относительной скорости между двумя телами можно следующим образом выразить с помощью скоростей самих тел по отношению к выбранной системе отсчета

$$(1 - \frac{\vec{V}^2}{c^2}) = \frac{(1 - \frac{\vec{V}_1^2}{c^2})(1 - \frac{\vec{V}_2^2}{c^2})}{(1 - \frac{\vec{V}_1\vec{V}_2}{c^2})^2}$$

Эта величина является симметричной относительно скоростей тел 1 и 2 в выбранной системе отсчета $\vec{V_1}$ и $\vec{V_2}$. В нашем приближении и в нашем случае

$$\sqrt{1 - \frac{\vec{V}^2}{c^2}} \approx 1 - \frac{\vec{V}_1^2}{2c^2} - \frac{\vec{V}_2^2}{2c^2} + \frac{\vec{V}_1\vec{V}_2}{c^2} \approx 1 - \frac{(\vec{V}_1 - \vec{V}_2)^2}{2c^2}$$
(4)

Из (1) (one-way) следует , что если с Земли посылается сигнал с частотой ω_0 , то вклад поперечного эффекта Допплера в смещение частоты сигнала , воспринимаемое космическим зондом, $(\Delta\omega)_{TD}$ будет

$$(\Delta\omega)_{TD} \approx \omega_0 \left(-\frac{\vec{V}_1^2}{2c^2} - \frac{\vec{V}_2^2}{2c^2} + \frac{\vec{V}_1\vec{V}_2}{c^2} \right) \approx \omega_0 \left(-\frac{1}{2c^2} (\vec{V}_1 - \vec{V}_2)^2 \right) = \omega_0 \left(-\frac{1}{2c^2} (\vec{V}_2 - \vec{V}_1)^2 \right)$$
 (5)

Как и должно быть в СТО, поправка поперечного эффекта Допплера зависит от квадрата относительной скорости (в нами используемом приближении).

Если космический зонд обратно на Землю излучает сигнал с частотой, принятой на самом зонде , то приемник на Земле будет воспринимать частоту ω' (two-way) . Будем пользоваться следующим приближением $\vec{V}_2 \approx \vec{V}_2'$, (космический зонд излучает сигнал обратно на Землю сразу же после принятия сигнала с Земли). Обозначим следующие величины :

 $ec{V_1'}$ - скорость в барицентрической системе отсчета приемника находящегося на Земле в момент приема сигнала ,

 $ec{V}^{\prime}$ - относительная скорость .

Для сигнала , посланного с космического зонда обратно на Землю, опять можно применить формулу (1). Можно заметить, что эту формулу можно получить и при помощи законов сохранения энергии и импульса, применительно к процессу излучения сигнала с космического зонда [3] (с. 287). Поправка поперечного эффекта Допплера теперь (two-way) для принятого сигнала на Земле от космического зонда будет

$$(\Delta\omega)'_{TD} \approx -\omega_0 \frac{\vec{V}^2}{2c^2} - \omega_0 \frac{\vec{V}'^2}{2c^2} \approx \omega_0 \left(-\frac{\vec{V}_1'^2}{2c^2} - \frac{\vec{V}_2^2}{2c^2} + \frac{\vec{V}_1\vec{V}_2}{c^2} - \frac{\vec{V}_1^2}{2c^2} - \frac{\vec{V}_2^2}{2c^2} + \frac{\vec{V}_1\vec{V}_2}{c^2} \right)$$
 (6)

Упрощаем (6) и получаем

$$(\Delta\omega)'_{TD} \approx \omega_0 \left(-\frac{\vec{V}_1'^2}{2c^2} - \frac{\vec{V}_1^2}{2c^2} - \frac{\vec{V}_2^2}{c^2} + \frac{(\vec{V}_1' + \vec{V}_1)\vec{V}_2}{c^2} \right) \tag{7}$$

Если к тому же $\Vec{V_1}' pprox \Vec{V_1}$, то вклад поперечного эффекта Допплера будет

$$(\Delta\omega)'_{TD} \approx \omega_0 \left(-\frac{\vec{V}_1^2}{c^2} - \frac{\vec{V}_2^2}{c^2} + \frac{2\vec{V}_1\vec{V}_2}{c^2} \right) \approx \omega_0 \left(-\frac{1}{c^2} (\vec{V}_1 - \vec{V}_2)^2 \right)$$
 (8)

Получаем удвоенное (по сравнению с случаем one-way) смещение частоты сигнала из-за поперечного эффекта Допплера (как и для продольного эффекта Допплера).

4. Нарушается ли принцип относительности СТО ?

В этом разделе рассмотрим тот же самый процесс, используя формулу (2). Обозначим:

 $d au_1$ - промежуток собственного времени в системе отсчета 1 в момент излучения сигнала,

 $d au_2$ - промежуток собственного времени в системе отсчета 2 в момент приема сигнала ,

 ω_0 - частота излучаемого сигнала в системе отсчета 1 ,

 ω - частота принимаемого сигнала в системе отсчета 2 .

Поправка поперечного эффекта Допплера (one-way) уже другая чем (5)

$$(\Delta\omega)_{TD} \approx \omega_0 \left(-\frac{\vec{V}_1^2}{2c^2} + \frac{\vec{V}_2^2}{2c^2} \right) \tag{9}$$

Очевидно, что (9) отличается от (5) тем , что релятивисткая поправка (9) не сводится к квадрату относительной скорости между приемником и излучателем, что , в свою очередь, не согласуется с принципом относительности СТО.

Далее, те же преобразования проводим и в случае возвращения сигнала с космического зонда обратно на Землю (two-way). Пусть $d au_1'$ - промежуток собственного времени приемника на Земле в момент приема сигнала. Тогда

$$\frac{\omega'}{\omega} = \frac{d\tau_2}{d\tau_1'}$$

Для поперечного эффекта Допплера смещение частоты будет уже другое

$$(\Delta\omega)'_{TD} \approx \omega_0 \left(-\frac{\vec{V}_1^2}{2c^2} + \frac{\vec{V}_2^2}{2c^2} + \frac{\vec{V}_1'^2}{2c^2} - \frac{\vec{V}_2^2}{2c^2} \right) \approx \omega_0 \left(-\frac{\vec{V}_1^2}{2c^2} + \frac{\vec{V}_1'^2}{2c^2} \right)$$
 (10)

Из (10) следует, что это смещение частоты (two-way) не зависит от квадрата скорости $\frac{\vec{V}_2^2}{c^2}$ космического зонда и от смешанных произведений скоростей космического зонда и станции на Земле (скоростей по отношению к барицентрической системе отсчета) $\frac{\vec{V}_1\vec{V}_2}{c^2}$, $\frac{\vec{V}_1'\vec{V}_2}{c^2}$. Можно этот факт (так как и гравитационный потенциал в точке нахождения космического зонда не вносит вклада в смещение частоты) представить как эффект того , что в этом случае воспринимаемая на Земле частота сигнала космического зонда не зависит от трансформации между собственным временем космического зонда и барицентрическим координатным временем [4] . Если следовать нашему приближению $\vec{V}_1' \approx \vec{V}_1$, то поправка поперечного эффекта Допплера (two-way) отсутствует

$$(\Delta \omega)'_{TD} \approx \omega_0 \left(-\frac{\vec{V}_1^2}{2c^2} + \frac{\vec{V}_1'^2}{2c^2} \right) \approx 0 \tag{11}$$

Очевидно, что (10) и (11) кардинально отличаются от (7) и (8). В нашем приближении, при таком общепринятом одинаковом в ОТО рассмотрении смещения частоты сигнала, обусловленного поперечным эффектом Допплера и разницой гравитационных потенциалов (в случае two-way), остается только эффект смещения частоты сигнала из-за продольного эффекта Допплера.

5. Возможная причина появления аномальных смещений частоты сигналов.

В случае посылки сигналов с Земли к космическим зондам и возвращениии этих сигналов на Землю (two-way) , наблюдаются так называемые аномальные смещения частот сигналов [8] (Pioneer anomaly , flyby anomaly). Можно предположить, что причиной этих аномальных смещений частоты сигналов является не само аномальное движение космических зондов по своим траекториям (положения , скорости, ускорения) , а ошибочный учет вклада поперечного эффекта Допплера (с нарушением принципа относительности СТО). Как известно [5] [6], JPL использует для расчета смещения частоты сигнала , обусловленого релятивистким поперечным эффектом Допплера (two-way) в геоцентрической и барицентрической системах отсчета именно формулу (10), а не формулу (7) . Возможно, это обстоятельство и приводит к тому , что получаются расхождения между наблюдаемыми смещениями частот и смещениями частот вычисляемыми при помощи алгоритмов JPL .

В [9] сделана оценка вклада члена, зависящего от квадрата скорости космического зонда в формуле (7), и показано, что изменение во времени этой величины соответствует порядку величины основной части наблюдаемого аномального изменения во времени частоты сигнала от зондов Пионер 10 и Пионер 11. Согласно (7), физическая интерпретация этого эффекта проста - в случае удаления зондов от источника гравитационного поля (гиперболическое движение), уменьшается кинетическая энергия космических зондов, при этом красное смещение частоты сигнала, обусловленное поперечным эффектом Допплера, уменьшается и, тем самым, в фиолетовую сторону смещается частота сигнала. Этот эффект на фоне смещения частоты продольного эффекта Допплера (красного смещения частоты

– зонд удаляется от источника поля и станции сигналов на Земле), если исходить из формулы (10), воспринимается как уменьшение вклада только продольного эффекта Допплера.

Как видно из (7), в отличии от (10), из- за наличия смешанных произведений скоростей космических зондов и станции на Земле, в смещении частоты из-за поперечного эффекта Допплера должны присутствовать суточные и годовые гармоники - что наблюдается в так называемом аномальном смещении частоты сигналов зондов Пионеров 10 и 11. Все таки , наблюдаемая величина этих гармоник и постоянство основной части аномального смещения сигналов на огромных расстояниях недостаточно согласуются с формулой (7). Но (как замечено и в [9]) следует иметь ввиду, что вся интерпретация данных и сами траектории зондов построены на использовании только продольного эффекта Допплера, и , по этой причине, могут быть и систематические ошибки в интерпретации данных JPL .

Можно заметить, что наличие (пока не имеющих объяснения), смещений частот сигналов наблюдаются и для других космических зондов, пролетающих, например, в гравитационном поле Земли (flyby anomaly). Если эти аномальные смещения частот зависят только от продольного эффекта Допплера, то в таком случае это означает наличие новых факторов (новых сил), влияющих на само движение этих зондов. Если же это проявления неправильно учтенного поперечного эффекта Допплера, то само движение космических зондов не является аномальным, и эта аномалия – это только ошибочная интерпретация результатов наблюдений. В таком случае, следует применять в геоцентрической системе отсчета для расчета вклада поперечного эффекта Допплера в смещение частоты формулу (7). При пролете Земли зондом, можно для начального и конечного асимптотических состояний зонда применить закон сохранения энергии (абсолютные величины начальной и конечной скоростей зондов в геоцентрической системе отсчета должны быть равны), и меняется только направление асимптотической скорости зонда в геоцентрической системе отсчета. Тогда, согласно (7), на разницу смещений частоты сигналов начального и конечного состояний зондов влияет только член содержащий скалярное произведение скорости станции и скорости зонда в геоцентрической системе отсчета . В [7] если и не доказано, то по крайней мере, показана возможность (порядок эффекта) того, что, при учете этого произведения скоростей, возможно получить хорошее приближение к феноменологической формуле, дающей связь начальной и конечной асимптотических скоростей зондов. Все таки можно заметить, что само это доказательство в [7] не является достаточно корректным так как:

- 1.В формуле поперечного эффекта Допплера используется не относительная скорость между станцией и космическим зондом, а сумма скоростей станции и зонда в геоцентрической системе отсчета.
- 2.Поперечный эффект Допплера в случае two-way выражен через продольный эффект Допплера для случая one-way.
- 3. Не учитывается тот факт, что при пролете зонда Земли, продольный эффект Допплера (смещение частоты сигнала) меняет знак.

Литература

- 1. Л.Д.Ландау, Е.М.Лифшиц Теория поля том 2 1988
- 2. В.А.Фок Теория пространства, времени и тяготения 1961
- 3. К.Меллер Теория относительности 1975
- 4. S.M.Kopeikin,G.Shafer http://xxx.lanl.gov/PS_cache/gr-qc/pdf/9902/9902030v5.pdf
- 5. C.B.Markwardt http://xxx.lanl.gov/PS_cache/gr-qc/pdf/0208/0208046v1.pdf
- 6. V.T.Toth http://xxx.lanl.gov/ftp/arxiv/papers/0903/0903.0075.pdf
- 7. J.P. Mbelek http://xxx.lanl.gov/ftp/arxiv/papers/0809/0809.1888.pdf
- 8. J.D.Anderson ,P.A.Laing,E..L.Lau,A.S.Liu,M.M.Nieto,S.G.Turyshev http://xxx.lanl.gov/PS_cache/gr-qc/pdf/0104/0104064v5.pdf
- 9.A.Yefremov Progress in Physics 2007 vol. 2 93-96

 http://www.ptep-online.com/index_files/2007/PP-09-18.PDF