ВИХРЕВЫЕ МОДЕЛИ НЕЙТРИНО, ЭЛЕКТРОНА И НУКЛОНОВ

Холманский А.С.

Собственная природа ядерной материи и эфира в равной мере непознаваемы. Гносеологическое преимущество эфира заключается в возможности построить на его основе единую иерархию порядка мира. Иерархия гармонично включает в себя все уровни организации материи, начиная от физической пустоты, кончая мыслеформами. При этом математическое форматирование элементов иерархии должно начаться с разумных моделей дискретных форм эфира и диалектически правильных принципов их самоорганизации в кванты полей, элементарные частицы и ядра. В настоящей работе представлен универсальный метод сборки хиральных вихрей эфира в вихревые элементы, лежащие в основе не только частиц и ядер, но и космических объектов. Метод был успешно апробирован на четырех основных частицах иерархии мира (нейтрон, протон, электрон, нейтрино).

Современная математика при всей своей комбинаторной ловкости и компьютерной мощи легко создает иллюзию реальности для любой химеры физика-теоретика: «В голове иного физика вместо конкретных свойств окружающего пространства гнездятся въедливые химеры представлений групп» [1]. Примером застарелой химеры служит кварковая модель нуклонов и нуклонная модель ядер с ее «мешками кварков» [2,3]. Признавая нелепость последней [4]: «само представление о нуклонах как составляющих ядра становится сомнительным», теоретики, оправдывают свои химеры изъянами эксперимента: «размер адрона зависит от природы инструмента, которым он измеряется». Столь же химеричен и бозон Хиггса, якобы возникший в результате столкновения в БАКе двух «мешков фотонов» [5]. Ядерная физика, как главный фактор милитаризации мировоззрения, к концу

XX века выродилась в *«физику высоких энергий»* с ее бомбами, БАКами, точечными лептонами и неадекватными моделями ядер и нуклонов [4,6].

В настоящей работе, опираясь на положения Элементарной Физики Эфира [7-10], построили вихревые модели основных состояний электронного антинейтрино, электрона, протона и нейтрона. При расчетах моделей использовали закономерности вихревого движения и эмпирические характеристики частиц: масса покоя (m), заряд (q), спин (S) (Таблица 1).

Таблица 1 Эмпирические характеристики частиц

Частица	Спин (ед. ћ)	Macca (r)	Заряд (ед. е)	Магнитный момент*
Нейтрон (N)	-1/2	1,6749 10 ⁻²⁴	0	- 1,91µg
Протон (Р)	1/2	$1,6726\ 10^{-24}$	1	$2,79\mu_{\Re}$
Электрон (е)	-1/2	9,1094 10 ⁻²⁸	-1	- 1,00µ ₅

^{*)} µя – ядерный магнетон, µБ – магнетон Бора.

Расчет внутренней структуры элементарных частиц, по сути, подобен расчету изначальных вихрей [7] с тем отличием, что характеристики покоящихся частиц использовали как граничные условия в соответствующих уравнениях для энергии и момента импульса. Основу (скелет) вихревых моделей частиц составляют различные комбинации оболочки и двух орбиталей. Эти вихревые элементы частиц представляют собой Бозеконденсат из 6 10^{23} (число Авогадро) пар элементарных хиральных вихрей эфира — зарядово-массовых пар (ЗМП). Заряды вихревых элементов кратны 1/3 от единицы заряда, спин оболочки равен $\hbar/2$, а орбиталей \hbar . Величина и знак заряда элементов ($\pm 1/3$ или $\pm 2/3$) подбирается в процессе расчета. Оболочка и орбиталь имеют в своей основе тороидальную топологию (Рис 1). Их моменты инерции определяли, исходя из приближения тонкостенной сферы ($2/3\text{mr}^2$) и тонкого обруча (mr^2) с радиусами г.

Проекцию магнитного момента элементов частиц (µ) на ось симметрии частицы определяли по известной формуле:

$$\mu = |L|q/2mc$$

где L, q и m есть момент импульса, заряд и масса элемента частицы. Знак µ частицы соотносили со знаком S (Таблицу 1) и рассчитывали как сумму проекций µ элементов, знаки которых определялись знаками L и не зависели от знака заряда элемента.

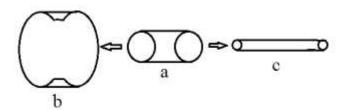


Рис 1. Схема трансформации геометрии тороидального вихря (a) в сфероидальный вихрь-оболочку (b) и кольцевую орбиталь (c).

Уравнения для частиц включали квантование момента импульса (L) для элементов и выражение магнитного момента через сумму магнитных моментов элементов, а также отождествление полной вращательной энергии частицы (3W) с энергией массы покоя частицы [7]. Использовали закон вихревого движения $\omega r = \text{const}$, принимая ω и г равными для внутренней орбитали и оболочки. Уравнения для вихревой модели структуры протона (Рис 2) имели вид:

a)
$$|L_{\infty}| = 2/3 \text{ mos ros}^2 \cos \alpha = \hbar/2;$$

a*) $|L_{\text{in}}| = \min \sin^2 \alpha \sin \alpha = \hbar;$
a**) $|L_{\text{ex}}| = \max \text{rex}^2 \cos \alpha = \hbar,$

где индексы « in » и « ex » обозначают внутреннюю и внешнюю орбитали;

Учитывая условия б), а также значения и соотношения:

$$q_{\text{o}5} = q_{\text{ex}} = 2/3, \quad q_{\text{in}} = -1/3; \quad m_{\text{in}} = 4/3 \,\, m_{\text{o}5}, \quad m_{\text{o}5} \,\, + \,\, m_{\text{in}} \,\, + \,\, m_{\text{ex}} = m_{\text{p}} \,\, \text{u} \,\, m_{\text{ex}} = m_{\text{p}} \,\, - \,\, 7/3 m_{\text{o}5}$$

уравнения в) и г) примут вид:

6*)
$$8,37/mp = 1/(4m_{00}) + 2/(mp - 7/3m_{00}).$$

B*) $3 \hbar/2 (3 \omega_{00}/2 + \omega_{ex}) = mpc^{2}.$

Система уравнений и соотношений при выбранных значениях зарядов дает единственное решение для неизвестных: m_{ob} , m_{in} , m_{ex} , r_{ob} , r_{ex} , ω_{ob} , ω_{ex} . При других вариантах распределения зарядов между элементами система не имела решений. Вычисленные значения параметров внутренней структуры протона приведены в Таблице 2. Аналогичным образом рассчитаны параметры вихревой структуры нейтрона, которую смоделировали нестабильной комбинацией оболочки и орбитали (Рис 2) (Таблица 2).

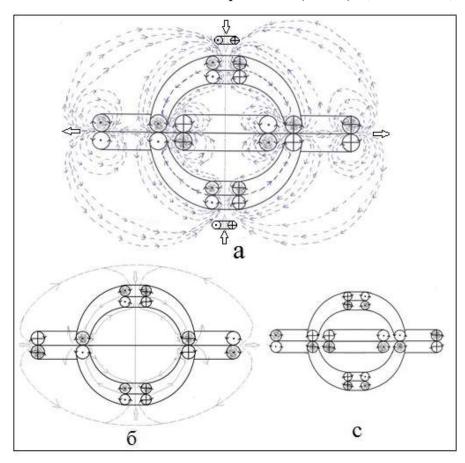


Рис 2. Вихревые модели структур протона (а), нейтрона (б) и электрона (с). Пунктиром и стрелками на (а) и (б) показаны вихревые потоки эфира, образующие атмосферу (овал Кельвина).

Для электрона предположили, что его структура подобна структуре протона, но имеет другое распределение зарядов элементов и величин L: оболочка -2/3e, L=-1/2ħ; внутренняя орбиталь -2/3e, L= -ħ; и внешняя орбиталь 1/3e, L=ħ (Таблица 2). При таких параметрах из выражения в) для магнитного момента электрона следует уравнение:

$$B^*$$
) $-1/m_e = -5/6 (1/m_{ob}) + 1/3[1/(m_e - 7/3m_{ob})]$,

его решение дает значения масс и радиусов элементов:

$$m_{o \bar{o}} = 0.33 m_e$$
; $m_{in} = 0.44 m_e$; $m_{ex} = 0.23 m_e$; $\omega_{o \bar{o}} = \omega_{in} = -2.6 \cdot 10^{20}$ и $\omega_{ex} = 1.3 \cdot 10^{20}$ с $^{-1}$; $r_{o \bar{o}} = r_{in} = 1.0 \cdot 10^{-10}$ и $r_{ex} = 2.0 \cdot 10^{-10}$ см (Таблица 2).

При расчете электронного антинейтрино (v_e) использовали эмпирические данные: $S = -\hbar$, $\mu = q = 0$ и полагали, что он движется со скоростью С. Этим граничным условиям удовлетворяет модель, которая состоит из оболочки и орбитали, образованных из самодвижущихся элементарных вихрей эфира (Рис 3). Для элементов модели взяли параметры: оболочка 2/3e, $L = 1/2\hbar$; внешняя орбиталь -2/3e, $L = -\hbar$ (Таблица 2). Система уравнений при этом включала уравнения а), a^{**}), б), а также в) и г), которые имели вид:

$$B^{**}$$
) $1/(3m_{o6}) - 2/[3(m_g - m_{o6})] = 0;$

$$\Gamma^*$$
) 3/2ħ ($\omega_{oo}/2 + \omega_{ex}$) = $m_g C^2$,

здесь $m_g = E/C^2$ — эквивалентная масса, определяемая энергией нейтрино E. Решение уравнений дает: $m_{o \bar{o}} = 0.33 m_g$; $m_{e x} = 0.67 m_g$;

$$r_{o6} = 3/2 \; r_{ex} = (27)^{1/2} \; \hbar/(2m_gC^2); \; \omega_{o6} = 3/2 \; \omega_{ex} = \; m_gC^2/(3\hbar).$$

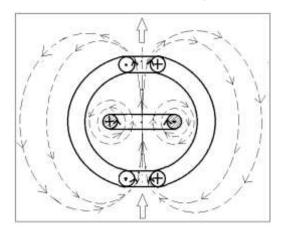


Рис 2. Вихревая модель структуры самодвижущегося электронного нейтрино. Пунктиром и стрелками показаны вихревые потоки эфира, образующие атмосферу (овал Кельвина).

Для солнечного нейтрино, продукта реакции pp-синтеза E=0,42 МэВ и ей соответствует $m_g=7,4\cdot 10^{-28}$ г. При такой энергии нейтрино имеет $r_{o6}=1,22$ $\cdot 10^{-10}$ см, $\omega_{o6}=2,3\cdot 10^{20}$ с $^{-1}$. Таким образом, вихревая модель электронного нейтрино изоморфна модели нейтрона, а ее параметры коррелируют с параметрами электрона (Таблица 2).

Есть гипотеза [7-9], что солнечное нейтрино также как и нейтрон нестабильно и распадается в магнитном поле солнца на $6\cdot10^{23}$ (число Авогадро) элементарных v/g-вихрей, имеющих энергию $\sim 1,1\cdot10^{-30}$ эрг и характерный радиус $\sim 7,3\cdot10^{13}$ см, практически совпадающий с радиусом орбиты Юпитера. Предполагают [7-9], что из нейтринных v/g-вихрей формируются магнитные силовые линии в виде трубок Фарадея.

Таблица 2 Параметры вихревой структуры протона (P), нейтрона (N), электрона (e), нейтрино ($\nu_{\rm e}$)

Частица,		L (ħ)	q (ед. е)	m*	$\omega 10^{-23} c^{-1}$	r, Фм
Элементы**						
$\nu_{\rm e}$	Sh	1/2	2/3	0,33	$2,3 \ 10^{-3}$	$1,22\ 10^3$
	Ex	-1	-2/3	0,67	$-3.5 \cdot 10^{-3}$	$0.81 \ 10^3$
e	Sh	-1/2	-2/3	0,33	$-2,6\ 10^{-3}$	$1,0\ 10^3$
	In	-1	-2/3	0,44	$-2,6\ 10^{-3}$	$1,0\ 10^3$
	Ex	1	1/3	0,23	$1,3 \ 10^{-3}$	$2,0\ 10^3$
N	Sh	1/2	2/3	0,72	12	0,24
	Ex	-1	-2/3	0,28	-35	0,80
	Sh	1/2	2/3	0,32	4,5	0,58
P	In	-1	-2/3	0,42	-4,5	0,58
	Ex	-1	1/3	0,28	2,8	0,93

^{*)} Доля m нуклона или электрона, **) Sh- оболочка, In и Ex- внутренняя и внешняя орбитали.

Полученные в работе величины радиусов и зарядов элементов протона и нейтрона, хорошо согласуются с экспериментальными данными по рассеянию электронов на нуклонах (Рис 4) [10]. Отмечают [10], что в нейтроне центральная область заряжена положительно, а область $r > 0.7 \, \Phi \text{M} - 0$ отрицательно. Четко прослеживается также и разница в радиусах оболочек протона и нейтрона (Рис 4). Радиусы внешних радиусов нуклонов близки к эмпирическому значению радиуса протона 0,86 Φ м [4]. Величина ω имеет

одинаковый порядок со скоростью реакции перестройки и выхода нуклона из возбужденного ядра [3].

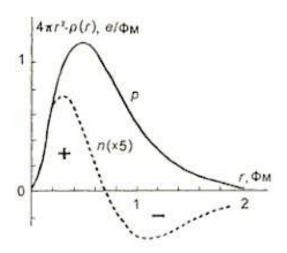


Рис 4. Распределение электрического заряда в протоне и нейтроне $(\Phi_{M}=10^{-13}~{\rm cm})~[10].$

Покоящийся электрон это идеализация, в реальности при повсеместном присутствии электромагнитных полей свободный электрон, а тем более электрон в атомах и молекулах постоянно движется. Движение электрона обеспечивает связанный с ним квант электромагнитной энергии (фотон). Встраивание вихревой структуры фотона в структуру электрона ведет к изменению его параметров [7]. Данное изменение можно определить, подставив в правую часть уравнения для энергии г) релятивистскую массу электрона:

$$m=m_o[1-(V/C)^2]^{-1/2} \approx m_o(2\alpha)^{-1/2}, \,\,$$
 здесь $\alpha=1-V/C<<1.$

При этом величин ω возрастет в $(2\alpha)^{-1/2}$ раз, а радиусы уменьшатся в $(2\alpha)^{1/4}$ раз. Например, при $\alpha=0.01$ (V=0.99C) получим $r_{\rm ex}=(0.02)^{1/4}$ 2.0 $\cdot 10^{-10}=7.5\cdot 10^{-11}$ см. Эту величину можно сравнить с длиной волны де Бройля (λ) или Комптона для электрона:

$$\lambda = (2\alpha)^{-1/2} (h/m_oC) = 3.4 \cdot 10^{-11} \text{ cm}.$$

В опытах по рассеянию применяют релятивистские электроны с энергией (E) порядка ГэВ (\sim 1 эрг). Величина (2α) $^{1/2}$ для таких электронов

будет равна $(m_o C^2)/E = 82 \cdot 10^{-8}$. Соответственно радиус электрона равен $(2\alpha)^{-1/4} r_{ex} = 9 \cdot 10^{-4} \, 2 \cdot 10^{-10} = 1,8$ Фм, что и позволяет зондировать распределение зарядов в нуклонах. Число γ -фотонов, встроившихся в скелет и атмосферу электрона и сообщивших ему кинетическую энергию порядка 1 Гэв составит [8]: $k = 1/(\hbar C/\lambda_{\gamma}) \sim 3 \cdot 10^{-10} / 310^{-17} = 10^{7}$. По такому же механизму ядра и частицы, разгоняемые в электромагнитном поле БАК, превращаются в *мешки фотонов* [5].

При аннигиляции электрона и позитрона тепловых энергией их вихревые элементы, образованные из хирально инверсных ЗМП, перегруппируются за время порядка 10^{-20} с в два набора самодвижущихся пар вихрей, из которых сформируются два γ -фотона с $\lambda_{\gamma} \sim 0.8 \cdot 10^{-10}$ см и противоположными импульсами. Вихревая структура этих фотонов будет иметь вид оболочки [11].

Входы в оболочки частиц и ядер являются воронками для внешних вихрей эфира. Хиральность этих воронок инверсна у протона и электрона. Вследствие этого спиральность потоков эфира всасываемых оболочками имеет разные знаки, что объясняет различие знаков их электрических зарядов. Таким образом, вихревые модели частиц и ядер и предложенный в работе алгоритм расчета их структуры вполне можно использовать как альтернативу химерическим моделям современной математической физики.

ЛИТЕРАТУРА

- 1. Верещагин, И.А. Философские заметки. Связь Времен. Вып. VI, 1999. C.48-96.
- 2. Маханьков, В.Г. Рыбаков, Ю.П. Санюк, В.И. Модель скирма и сильные заимодействия // Успехи физических наук. 1992. Том 162, № 2. С. 1-60.
- **3.** Лексин, Г.А. Кумулятивные частицы // Соровский образовательный журнал. 1996. 12, -С.69-74.
- 4. Эриксон, Т. Вайзе, В. Пионы и ядра. -М.: Наука. 1991. -512с.

5. Холманский, А. С. Электромагнитная природа релятивистских эффектов // Математическая морфология. Электронный математический и медико-биологический журнал.— 2011.

http://technic.itizdat.ru/Uploads/aholy/FIL13591378350N822068001/.pdf.

- 6. Бекман И.Н. Ядерная физика. МГУ, 2010. 511 c.
- 7. Холманский А.С. Начала хиральной физики // http://technic.itizdat.ru/docs/aholy/FIL14605757460N622319001/1
- 8. Холманский, А. С. Элементарная физика эфира // «Наука и мир». 2016. №4, С. 19-24.

http://scienceph.ru/d/413259/d/science and world no 4 (32), april, vol. i.pdf

- 9. Холманский А.С. Теофизика pro физика; http://www.neizvestniy-geniy.ru/cat/literature/stati/333288.html
- 10. Недорезов В.Г., Мушкаренков А.Н. Электромагнитные взаимодействия ядер // http://nuclphys.sinp.msu.ru/eint/index.html
- 11. Холманский А.С. Модель фотона // http://technic.itizdat.ru/Uploads/aholy/FIL13663623000N707505001/.pdf