Гравитационное отклонение света 3

Владимир Браун

27.10.2020

Данная статья содержит небольшие дополнения к предыдущей статье.

Первое – приведён альтернативный вариант вывода выражения для угла траектории с радиус-вектором, без использования выражений для угловой и радиальной скорости. Второе – продемонстрирована возможность применения формул текущего отклонения к телам с гиперболической траекторией.

Тангенс угла траектории с радиус-вектором равен отношению тангенциальной и радиальной составляющих скорости:

$$\operatorname{tg} \theta = \frac{v_{\perp}}{v_{r}} = \frac{r\dot{\varphi}}{\dot{r}}.$$

В прошлый раз, воспользовавшись равенствами

$$\dot{\varphi} = \frac{\sqrt{-v_{\infty}^2 ap}}{r^2}, \quad \dot{r} = \frac{\sqrt{v_{\infty}^2 (r-a)(r-p)}}{r},$$

мы получили для него выражение

$$\frac{r\dot{\varphi}}{\dot{r}} = \sqrt{\frac{ap}{(a-r)(r-p)}} \ .$$

Попробуем теперь вывести его по-другому:

$$\frac{r\dot{\varphi}}{\dot{r}} = r\frac{\mathrm{d}\varphi}{\mathrm{d}t} / \frac{\mathrm{d}r}{\mathrm{d}t} = r\frac{\mathrm{d}\varphi}{\mathrm{d}r} = r\frac{\mathrm{d}}{\mathrm{d}r} \left(\arcsin\frac{r-f}{er}\right) = \frac{f}{\sqrt{e^2r^2 - (r-f)^2}}.$$

Подставив
$$e = \frac{a-p}{a+p}$$
, $f = \frac{2ap}{a+p}$, получаем то же, что и раньше: $\frac{r\dot{\phi}}{\dot{r}} = \sqrt{\frac{ap}{(a-r)(r-p)}}$.

Первый вариант короче и проще. Но так как использованные при этом выражения угловой и радиальной скорости из моего обобщения Ньютоновой теории тяготения приведены без доказательства, то новый вывод может показаться более убедительным. С другой стороны, полученное совпадение результатов — подтверждение верности названного обобщения и следствий из него.

Полученные нами формулы отклонения пригодны не только для света, но и для тел с гиперболической траекторией. В последнее время были открыты два таких объекта:

- 1. 1I/Оумуамуа первый обнаруженный межзвёздный объект, пролетающий через Солнечную систему (открыт 19.10.2017);
- 2. 2I/Borisov комета Борисова, первая межзвёздная комета, с гелиоцентрическим эксцентриситетом орбиты больше 3-х (открыта 30.08.2019).

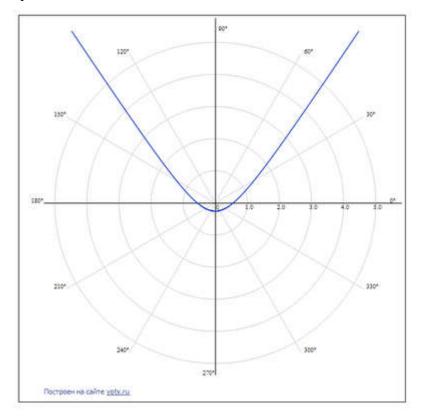
Давайте, опробуем наши формулы отклонения на этих объектах. Считая, что тела летят с очень большого расстояния, используем формулу

$$\gamma = \arcsin \frac{1}{e} + \arcsin \left(\frac{1}{e} \sqrt{\frac{(r-a)(r-p)}{(r-a-p)r}} \right).$$

1. Астероид 1І/Оумуамуа:

e = 1,19951

p = 0.25534 a.e.


a = -2.81501 a.e.

f = 0.56162 a.e.

Соответствующее уравнение траектории:

$$r = \frac{0,56162}{1 - 1,19951\sin\varphi}.$$

Траектория астероида в Солнечной системе:

Отклонение траектории от прямой линии на разных расстояниях от Солнца:

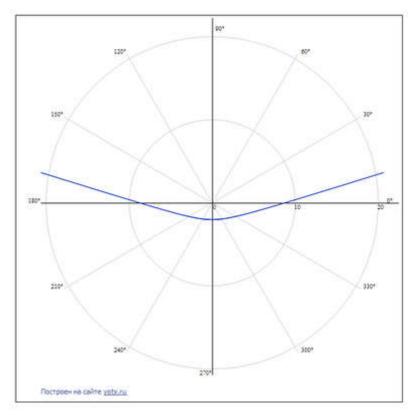
Перигелий	0,2553 a.e.	56,48°
Меркурий	0,3871 a.e.	86,94°
Венера	0,7233 a.e.	100,60°
Земля	1,0000 a.e.	104,62°
Mapc	1,5237 a.e.	108,11°
Юпитер	5,2026 a.e.	112,19°
Сатурн	9,5549 a.e.	112,69°
Уран	19,2185 a.e.	112,88°
Нептун	30,1104 a.e.	112,92°
Плутон	39,5447 a.e.	112,94°
	∞	112,96°

Цитата из Википедии: "Объект отдаляется от Солнца под углом в 66° от изначального направления". Наш расчёт даёт немного другое значение: $180^{\circ} - 113^{\circ} = 67^{\circ}$.

2. Комета Борисова, 2I/Borisov.

e = 3,3572

p = 2,00663 a.e.


a = -3,70918 a.e.

f = 8,74330 a.e.

Соответствующее уравнение траектории:

$$r = \frac{8,74330}{1 - 3,3572\sin\varphi} \,.$$

Траектория кометы в Солнечной системе:

Отклонение траектории от прямой линии на разных расстояниях от Солнца:

Перигелий	2,0066 a.e.	17,33°
	2,1000 a.e.	21,78°
	2,3000 a.e.	24,82°
	2,5000 a.e.	26,59°
	3,0000 a.e.	29,14°
	4,0000 a.e.	31,48°
Юпитер	5,2026 a.e.	32,71°
Сатурн	9,5549 a.e.	34,03°
Уран	19,2185 a.e.	34,49°
Нептун	30,1104 a.e.	34,59°
Плутон	39,5447 a.e.	34,62°
	∞	34,66°

Вы, наверное, обратили внимание, что отсчёт расстояний начинается с перигелия, и, соответственно, отсчёт углов — с угла в перигелии. Для света это естественно, поскольку отклонение света наблюдается с некоторого расстояния от центра тяготения, с Земли, уже после прохождения светом перигелия. Для тел же, такой отсчёт, вообще говоря, не совсем естественен. Мы можем захотеть узнать угол отклонения в момент, когда тело находится на некотором расстоянии от центра ещё до прохода перигелия. Т.е. для тел более естественно начать отсчёт углов с нуля.

Достичь этого можно с помощью следующей формулы, точнее формул, потому что это, по сути, две формулы – для каждой части траектории своя:

$$\gamma = \arcsin \frac{1}{e} \pm \arcsin \left(\frac{1}{e} \sqrt{\frac{(r-a)(r-p)}{(r-a-p)r}} \right).$$

Знак минус используется для левой части траектории, до прохождения перигелия, знак плюс — для правой части, после прохождения перигелия.

Отсчёт углов будет идти тогда с нуля на бесконечном расстоянии от центра тяготения до прохождения перигелия – до предельного угла на бесконечном расстоянии от центра после прохождения перигелия. Эти формулы можно, конечно, применить и для света.

Вот какие значения мы получим тогда для отклонения траектории астероида 11/Оумуамуа от изначального направления на разных расстояниях от Солнца:

	∞	0°
Плутон	39,5447 a.e.	0,02°
Нептун	30,1104 a.e.	0,03°
Уран	19,2185 a.e.	0,07°
Сатурн	9,5549 a.e.	0,27°
Юпитер	5,2026 a.e.	0,77°
Mapc	1,5237 a.e.	4,85°
Земля	1,0000 a.e.	8,34°
Венера	0,7233 a.e.	12,36°
Меркурий	0,3871 a.e.	26,01°
Перигелий	0,2553 a.e.	56,48°
Меркурий	0,3871 a.e.	86,94°
Венера	0,7233 a.e.	100,60°
Земля	1,0000 a.e.	104,62°
Mapc	1,5237 a.e.	108,11°
Юпитер	5,2026 a.e.	112,19°
Сатурн	9,5549 a.e.	112,69°
Уран	19,2185 a.e.	112,88°
Нептун	30,1104 a.e.	112,92°
Плутон	39,5447 a.e.	112,94°
	∞	112,96°