Новые идеи и гипотезы    
Реклама в Интернет
  new-idea.kulichki.net
- Разделы -
Последние публикации
Физика
Техника
Философия
Математика
Общество
Психология
Биология
Непознанное
Искусственный интеллект
Разное
Дополнительно
Опубликовать материал
Форумы

Партнеры
Доски объявлений:  Подать объявление о продаже недвижимости, автомобиля Подать объявление о продаже недвижимости, автомобиля в Украине, Київ, Крым
ОДНОСТИШИЯ



Белый каталог ссылок







Поиск на сайте или в интернете

Публикации: Математика, алгебра




Математика, Оценка запаса статической прочности тонкостенных цилиндрических стальных баллонов по коэффициенту их остаточного расширения, статья [word], Р. И. Дмитриенко, А. А. Перепечай, Д. В. Прохоренко, А. Р. Алексиев, 20.11.2019

Аннотация: Представлено теоретическое и экспериментальное обоснование использования метода остаточного расширения для оценки статической прочности цилиндрических стальных баллонов. Используются единая кривая деформирования и деформационная теория пластичности. Приведена возможность обоснованного назначения предельно-допустимого коэффициента остаточного расширения, используемого при периодической инспекции баллонов.
Ключевые слова: стальные баллоны, гидроиспытания внутренним давлением, изменение объема, запас прочности, периодическая проверка.



Математика, Теория чисел. О делителях составных чисел Мерсенна. Вторая редакция, архив (rar), Россия. Самара. Гончаров Виталий Иванович, 09.09.2019

В статье приведены результаты эмпирических исследований составных чисел Мерсенна: определены наименьшие простые делители составных чисел Мерсенна; дана оценка относительного
числа составных чисел Мерсенна, простые делители которых определены. Общее число рассмотренных чисел Мерсенна составляет 400.



Математика, Теория чисел. О методе факторизации чисел Мерсенна, архив (rar), Россия. Самара. Гончаров Виталий Иванович, 05.09.2019

В статье приведено описание метода факторизации чисел Мерсенна. Метод разработан на основе алгебраических операций
умножения и деления на множестве Bp. Элементы множества имеют
вид 2pn+1, n=1,2,3,..., где p-индекс числа Мерсенна Mp.



Математика, Теория чисел. О методе факторизации чисел Мерсенна, архив (rar), Россия. Самара. Гончаров Виталий Иванович, 05.09.2019

В статье приведено описание метода факторизации чисел Мерсенна. Разработан на основе алгебраических операций
умножения и деления на множестве
Bp={a



Математика, Теория чисел. О методе факторизации чисел Мерсенна, архив (rar), Россия. Самара. Гончаров Виталий Иванович, 05.09.2019

В статье приведено описание метода факторизации чисел
Мерсенна, разработанного на основе алгебраических операций
умножения и деления на множестве Bp={a



Математика, Решение задачи уравнивания полигонометрии, статья [word], Сметанников А.И., 02.09.2019

Изложено практически важное решение задачи уравнивания замкнутого геодезического хода - замкнутой полигонометрии,исходя лишь из его геометрических условий ,считавшаяся ранее неразрешимой.



Математика, Некратные числа, ссылка, Браун В.Г., 01.03.2019

Число 2 выглядит белой вороной среди простых чисел. 2 – единственное чётное простое число, все остальные простые числа нечётны. Но ведь и 3 – единственное простое число кратное трём, все остальные не кратны 3-м. Более того, все простые, кроме 2 и 3, некратны 2 и 3.

Нам привычна формула общего члена ...



Математика, Простые числа. Квазипериодическая таблица, ссылка, Браун В.Г., 22.02.2019

Леонард Эйлер в замечательной статье «Открытие наиболее необычайного закона чисел, относящегося к суммам их делителей» писал о простых числах:
«До сих пор математики тщетно пытались обнаружить в последовательности простых чисел какой-либо порядок, и мы имеем все основания верить, что здесь существует какая-то ...



Математика, Proof of the Goldbach-Euler hypothesis, статья [word], Mykhaylo Khusid, 15.02.2019

Abstract:it is known that a weak problem Goldbach is finally solved .

[1]

where on the left is the sum of three odd primes
more than 7
The author provides the proof in this work, being guided by the decision

weak problem of Goldbach that: p1 + p2 + p3 + p4 = 2N [2] where on the right sum of four prime numbers, at the left any even number,

since 12, by method of mathematical induction. Keywords: and on this basis decides topical number theory problems.



Математика, Proof of the Goldbach-Euler hypothesis, статья [word], Mykhaylo Khusid, 15.02.2019

is known that a weak problem Goldbach is finally solved .

[1]

where on the left is the sum of three odd primes
more than 7
The author provides the proof in this work, being guided by the decision

weak problem of Goldbach that: p1 + p2 + p3 + p4 = 2N [2] where on the right sum of four prime numbers, at the left any even number,

since 12, by method of mathematical induction.



Математика, Representation of an even number by the sum of four odd simple numbers., статья [word], Mykhaylo Khusid, 12.02.2019

Due to a typo in the previous version
:it is known that a weak problem Goldbach is finally solved

[1]

where on the left is the sum of three odd primes
more than 7 The author provides the proof in this work, being guided by the decision

weak problem of Goldbach that: p1 + p2 + p3 + p4 = 2N [2] where on the right sum of four prime numbers, at the left any even number,

since 12, by method of mathematical induction.



Математика, Representation of an even number by the sum of four odd simple numbers., статья [word], Mykhaylo Khusid, 10.02.2019

(corrected and translated version)

it is known that a weak problem Goldbach is finally solved .

[1]

where at the left the sum of three prime numbers, on the right odd numbers, since 7
The author provides the proof in this work, being guided by the decision

weak problem of Goldbach that: p1 + p2 + p3 + p4 = 2N [2] where on the right sum of four prime numbers, at the left any even number,

since 12, by method of mathematical induction. Keywords: and on this basis decides topical number theory problems.



Математика, Решение 2х актуальных задач по теории чисел., статья [word], Mykhaylo Khusid, 09.02.2019

Материал с устранением допущенных ранее ошибок.

Abstract: Harald Andrés Helfgott в 2013 году окончательно решил слабую проблему Гольдбаха. p1 + p2 + p3 = 2N+1 [1]
где слева сумма трёх простых чисел, справа нечётные числа, начиная с 9 В данной работе автор приводит доказательство, опираясь на решение
слабой проблемы Гольдбаха, что: p1 + p2 + p3 + p4 = 2N [2]
где справа сумма четырёх простых чисел, слева любое чётное число,
начиная с 12,
методом математической индукции. Keywords: На этой основе решает две актуальные задачи теории чисел.



Математика, О проблеме Гольдбаха-Эйлера, статья [word], Аркадий Хусид, 07.02.2019

В 1742 году Гольдбах в письме к Эйлеру поставил проблему доказать,

что каждое нечётное число может быть представлено в виде суммы

трёх простых чисел (нечётные числа берутся , начиная с 7). Эйлер в

ответном письме высказал гипотезу, что имеет место более сильное

утверждение, а именно, что каждое чётное число (начиная с 4) может

быть представлено в виде суммы двух простых чисел.



Математика, Гипотеза Гольдбаха-Эйлера, статья [word], Mykhaylo Khusid, 02.02.2019

Автор доказывает теорему, что любое чётное число представимо
в виде суммы четырёх простых.Затем на её основе доказывает
гипотезу Гольдбаха-Эйлера, что любое чётное число, начиная с 6 представимо в виде суммы двух нечётных простых.



Математика, Решение 2х актуальных задач по теории чисел., статья [word], Mykhaylo Khusid, 25.01.2019

Доказательство теоремы "Представление чётного числа в виде
суммы четырёх простых." И решение двух актуальных задач на основе вышеописанной теоремы.Исправленный материал относительно прошлой статьи.



Математика, Решение 2х актуальных задач по теории чисел., статья [word], Mykhaylo Khusid, 22.01.2019

Доказательство теоремы "Представление чётного числа в виде
суммы четырёх простых." И решение двух актуальных задач на основе вышеописанной теоремы.Исправленный материал относительно прошлой статьи.



Математика, Решение 2х актуальных задач по теории чисел., статья [word], Mykhaylo Khusid, 16.01.2019

Автор доказывает теорему "Любое чётное число ,начиная с 12, представляется суммой четырёх простых чисел" методом математической индукции на основании доказанной гипотезе Гольдбаха о представлении нечётных чисел и
использует её для решения фундаментальных задач по теории чисел 1.Проблема Гольдбаха-Эйлера.2.Задача о близнецах.



Математика, Построение додекаэдра и его звёздчатых форм, ссылка, Браун В.Г., 22.12.2018

Предлагается простой способ точного построения додекаэдра и его звёздчатых форм в растровой графике, например в Paint'е. Ясно, что построить что-либо непрямоугольное на точках абсолютно точно возможно лишь в исключительных случаях. Достижимая точность зависит от разрешения растра. Именно такая точность и имеется здесь ...



Математика, Доказательство пятого постулата Евклида, статья [word], Хейфец Эдуард Олегович, 21.05.2018

В течение 2000 лет пятый постулат безуспешно пытались доказать. Причину этого создатели не-Евклидовых геометрий усматривают в его принципиальной недоказуемости (следовательно, и неопровержимости); автор -- в попытке вывести его из основных аксиом, якобы исчерпывающих всю геометрию. Предложенное доказательство основывается на анализе таких понятий, как угол и прямая. Вводится и доказывается положение, которое могло бы стать аксиомой, из которой следует пятый постулат. Кроме того показана связь не-Евклидовых геометрий с общим состоянием науки начиная с середины XIX в.


Страницы:   1 2 3 4

Следующая страница →





Реклама в Интернет

  new-idea.kulichki.net Возврат