Исследование решения задачи античной математики Квадратура круга от обратного

Квадратура круга

[©] Дениченко С. Н., Дениченко Л. В.

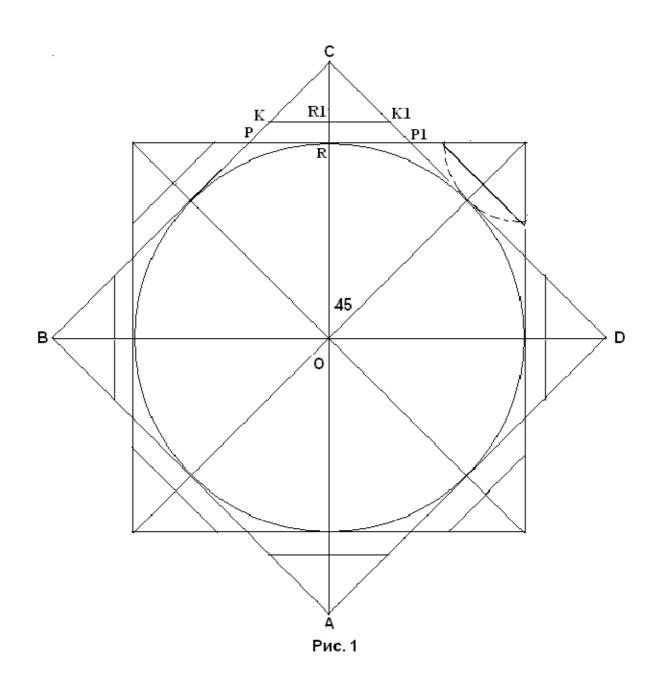
Квадратура круга

В данной работе, исследована возможность решения задачи античной математики «Квадратура круга» от обратного. В предлагаемой для прочтения статье показана возможность построение круга, равновеликого по площади квадрату, т. е. решена «кругатура квадрата», что дало возможность решить «квадратуру круга» с точностью на восемь знаков общепринятого числа π, и выразить длину окружности прямым отрезком.

Если расчёт задачи вести на большее количество знаков, то результат величины стороны квадрата будет равен, 17724538968686925718887244115238... площадь квадрата при этом равна 3,1415928165250138836954861078059...

Исследование возможности решения задачи античной математики «Квадратура круга» от обратного

РАВНОВЕЛИКОСТЬ КВАДРАТА И ШЕСТЕРЁНКИ



Около круга радиуса **OR** (рис. 1), величину которого принимаем за единицу длины, опишем правильную восьмиконечную звезду **Q**, образованную из двух

равных квадратов, один из которых квадрат **ABCD**.

$$S_{ABCD} = (AB)^2 = (20R)^2$$

Каждая сторона одного квадрата отсечёт от каждой прямоугольной вершины другого квадрата по треугольнику, один из которых треугольник **РСР**₁.

Oтсюда $S_Q = S_{ABCD} + 4S_{PSP_1}$

Радиусом **CR** из каждой прямоугольной вершины фигуры **Q** опишем дуги на её стороны, а точки пересечения сторон и дуг соединим прямыми линиями. В треугольнике **PCP**₁ такой прямой будет **KK**₁. Пересекаясь с диагональю квадрата, прямая **KK**₁ образу-

ет точку **R**₁. В фигуре **Q** каждый выступающий прямоугольный треугольник, равный треугольнику **PCP**₁, будет делиться на две равновеликие фигуры, треугольник и трапецию, какими являются треугольник **КСК**₁ и трапеция **PKK**₁**P**₁. Если удалить в фигуре **Q** все восемь одинаково выступающих прямоугольных треугольников, один из которых треугольник **КСК**₁, то получим фигуру **T**

- «шестерёнку» с выступающими трапециями по площади равной площади квадрата АВСD

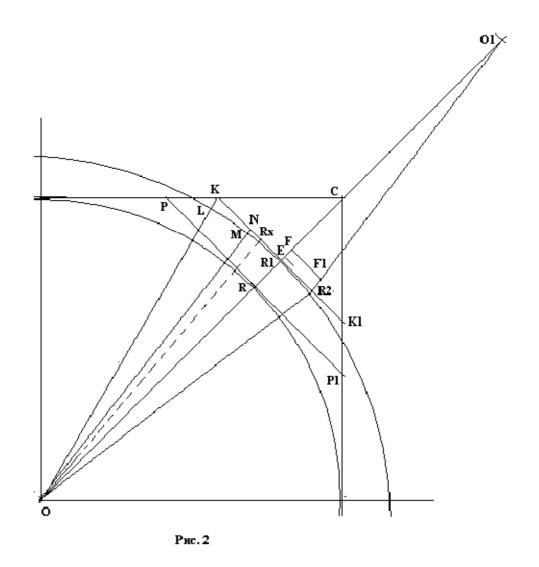
$$S_{T} = S_{Q} - 8S_{KCK_{1}} = \left(S_{ABCD} + 4S_{PCP_{1}}\right) - 8 \times \frac{1}{2}S_{PCP_{1}} = S_{ABCD}$$

$$S_{T} = S_{ABCD}$$

КРУГАТУРА КВАДРАТА

На рис.2, который представляет фрагмент рис.1, центр **0** соединим с точ-

кой **K**. Получим треугольник **OKR**₁, в котором проведём медиану **ON**. Радиусом **OR**₁ проведём дугу, которая отсечёт от медианы **ON** отрезок **MN**, а от гипотенузы **OK** – отрезок **LK**.



Приводим расчёт полученных отрезков.

$$OR \ = \ 1$$

$$OC = OR \times \sqrt{2} = 1 \times 1,4142135 \dots$$

$$RC = OC - OR = 1,4142135 \dots - 1 = 0,4142135 \dots$$

$$KK_1 = RC \times \sqrt{2} = 0,4142135 \dots \times 1,4142135 \dots = 0,5857863 \dots$$

$$RR_1 = RC - \frac{KK_1}{2} = 0,4142135 \dots - 0,2928931 \dots = 0,1213204 \dots$$

$$OR_1 = OR + RR_1 = 1 + 0,1213204 \dots = 1,1213204 \dots$$

$$OK^2 = OR_1^2 + \left(\frac{KK_1}{2}\right)^2 = 1,1213204 \dots^2 + 0,29289931 \dots^2 = 1,1589416 \dots^2$$

$$LK = OK - OR_1 = 1,1589416 \dots - 1,1211113204 \dots = 0,0376212 \dots$$

$$ON^2 = OR_1^2 + \left(\frac{KK_1}{4}\right)^2 = 1,1213204 \dots^2 + 0,1464465 \dots^2 = 1,130843^2$$

$$MN = ON - OR_1 = 1,130843 \dots - 1,1213204 \dots = 0,0095226$$

Радиус круга равновеликого квадрату **АВСD** примем условно за \mathbf{OR}_X . Находим его арифметическую величину из равенства площадей условного круга с радиусом \mathbf{OR}_X и квадрата \mathbf{ABCD} .

$$\pi \times OR_X^2 = (20R)^2 \qquad \qquad 3,1415926 ... \times OR_X^2 = 4$$

$$OR_X = \sqrt{\frac{4}{3,1415926...}} = 1,1283791 ...$$

Условную точку \mathbf{R}_X расположим произвольно на отрезке $\mathsf{K}\mathsf{K}_1$ и соеди-

ним её пунктирной прямой с центром O.

Получим условный прямоугольный треугольник OR_1R_X . Арифметическую величину условного катета R_1R_X получим из решения

$$R_1 R_X^2 = 0 R_X^2 - 0 R_1^2 = 1,1283791 \dots^2 - 1,1213204 \dots^2$$

= 0.1260164 \dots^2

Эту же величину мы получим из пропорции составленную из величин отрезков, ранее полученных геометрически

$$\frac{(\textit{OR} + \textit{MN}) - \textit{LK}}{(\textit{OR} + \textit{MN})} = \frac{\textit{RR}_1}{\textit{R}_1 \textit{R}_X}$$

$$R_1R_X = \frac{(OR + MN) \times RR_1}{(OR + MN) - LK}$$

$$R_1 R_X = \frac{(1+0,0095226...)\times 0,1213204...}{(1+0,0095226...)-0,0376212...} = 0,1260164...$$

Арифметическую величину R_1R_X выразим геометрическим отрезком.

Отрезки **MN** и **LK** перенесём на диагональ **ОС** радиусами **ОN** и **ОК**. Отрезок **MN** отложится от точки $\mathbf{R_1}$ до точки \mathbf{E} , а отрезок **LK** от точки $\mathbf{R_1}$ до точки \mathbf{F} .

Затем отрезок **OR** положим на продолжение диагонали **OC** так, чтобы началом отрезка **OR** была точка **E**, а концом — точка **O**₁. Из точки **F** построим перпендикуляр к **OO**₁, на котором отложим величину отрезка **RR**₁, от точки **F** до точки **F**₁. Через точки **O**₁ и **F**₁ проведём прямую до пересечения с прямой **KK**₁ в точке **R**₂.

Таким образом, условная величина R_1R_X выразилась геометрическим отрезком R_1R_2 . Полученную точку R_2 соединим прямой с центром $\mathbf{0}$. Получим радиус $\mathbf{0R_2}$ круга равнове-

ликого по площади квадрату АВСО

$$OR_2^2 = OR_1^2 + R_1R_2^2 = 1,1213204 ...^2 + 0,1260164 ...^2$$

= 1,1283791 ...²

КВАДРАТУРА КРУГА

Если принять квадрат, равновеликий по площади кругу с радиусом \mathbf{OR} за условный квадрат $\mathbf{A_XB_XC_XD_X}$, то получим пропорцию

$$\frac{S_{OR}}{S_{OR_2}} = \frac{S_{AxBxCxDx}}{S_{ABCD}}$$

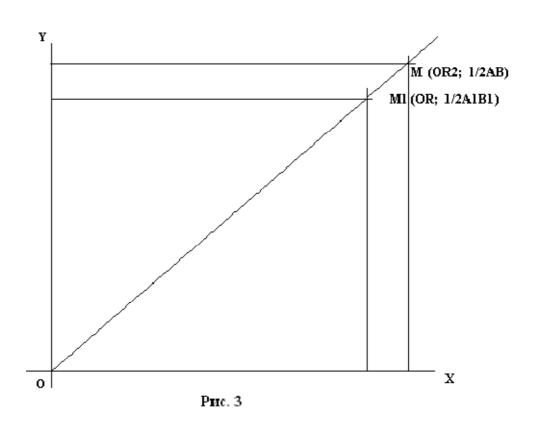
ИЛИ

$$\frac{OR}{OR_2} = \frac{1/2A_XB_X}{1/2\,AB}$$

которую положим в систему координат (рис. 3), чтобы выразить условную величину $1/2 A_X B_X$ геометрическим отрезком.

Левую часть пропорции положим на ось абсцисс, правую – на ось ординат.

Точки M (OR_2 ; 1/2 AB) и O дают луч, на котором абсциссой OR отразится точка M_1 .



Проекция, которой на ось ординат, геометрически отразит $\frac{1}{2}$ стороны искомого квадрата $A_1B_1C_1D_1$, равновеликого по площади кругу радиуса OR

$$A_1B_1=\frac{0R\times 1/2\,AB}{0R_2}$$

$$1/2 A_1 B_1 = \frac{1 \times 1}{1,1283791...} = 0,8862269...$$

$$A_1B_1 = 0,8862269 \times 2 = 1,7724538 \dots$$

Если расчёт задачи вести на большее количество знаков, то сторона квадрата $\mathbf{A_1B_1}$ будет равна 1,7724538968686925718887244115238... $\mathbf{S_{A1B1C1D1}}$ при этом будет равна 3,1415928165250138836954861078059...

ДЛИНА ОКРУЖНОСТИ

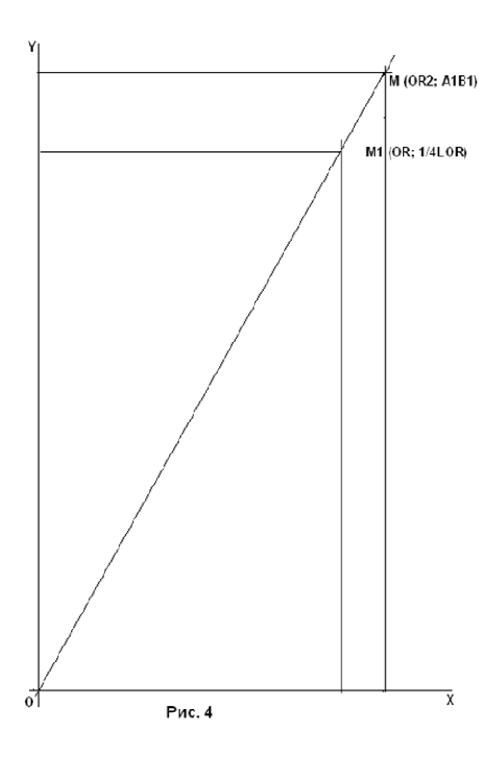
Нахождение стороны квадрата $A_1B_1C_1D_1$ даёт возможность выразить L_{OR} — длину окружности круга радиуса OR прямым отрезком.

Составим пропорцию

$$rac{OR}{OR_2} = rac{L_{OR}}{P_{A1B1C1D1}}$$
 или $rac{OR}{OR_2} = rac{1/4L_{OR}}{A_1B_1}$

которую положим в систему координат (рис.4) Левую часть пропорции

положим на ось абсцисс, правую, на ось ординат.



Точки M ($OR_2; A_1B_1$) и O дают луч, на котором абсциссой OR образуется точка, M_1 проекция которой на ось ординат геометрически отразит прямым отрезком $1/4L_{OR}$

$$1/4L_{OR} = \frac{10R \times A_1B_1}{OR_2}$$

$$1/4L_{0R} = \frac{1,7724538...}{1,1283791...} = 1,5707963...$$

$$1/2L_{OR} = 1,5707963 \times 2 = 3,1415926 \dots$$

$$L_{OR} = 1,5707963 ... \times 4 = 6,2831852 ...$$

Если расчёт задачи вести на большее количество знаков, то $1/2L_{OR}$ будет равна з,1415928165250138836954861078045... В свою очередь, 1/4 длины окружности круга, радиуса OR_2 , тоже выражена прямым отрезком, A_1B_1 , что видно из Рис.4

© Дениченко С. Н., Дениченко Л. В. 2007 г.